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Abstract

Purpose – This article aims to study numerically three dimensional developing incompressible flow
and heat transfer in a fixed curved pipe.
Design/methodology/approach – A projection algorithm based on the second order finite
difference method is used for discretizing governing equations written in the toroidal coordinate
system.
Findings – The effects of curvature and governing non-dimensional parameters consisting of
Reynolds, Prandtl, and Dean numbers on the flow field, entrance length, and heat transfer are studied
in detail. The numerical results indicate that the entrance length depends only on the Reynolds
number for the curvature ratios greater than 1/7 and therefore, Dean number is not a pertinent
parameter in this range.
Research limitations/implications – For heat transfer analysis, two different thermal boundary
conditions, i.e. constant wall temperature and constant heat flux at the wall are implemented. The
results are calculated for the Dean numbers in the range of 76-522 and for the two prandtl numbers of
0.5 and 1.
Practical implications – The results can be used in designing heat exchangers, piping systems,
and cooling of gas turbine blades.
Originality/value – The numerical results obtained here concentrate on the detailed investigation of
flow and temperature field at the entrance region by a quantitative analysis of hydrodynamic and
thermal entrance length. The effects of different thermal boundary conditions and different inlet
profiles on the flow and temperature fields are studied in the circular curved pipe for the first time.
Keywords Flow, Finite difference methods, Pipes, Heat transfer, Curve fitting, Fluid dynamics
Paper type Research paper
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Nomenclature

Latin symbols

a ¼Pipe radius

Cf ¼Friction factor

Cp ¼ Specific heat at
constant pressure

d ¼Pipe diameter

Ec ¼Eckert number

h ¼Convection heat
transfer coefficient

k ¼Thermal conductivity

KLC (or De) ¼Dean number

Nu ¼Nusselt number

p ¼Pressure

Pr ¼Prandtl number

qw ¼Heat flux at the wall

~rr ¼Position vector

r ¼Radial direction

R ¼Curvature

Re ¼Reynolds number

t ¼Time

T ¼Temperature

u ¼Radial velocity
~VV ¼Velocity vector
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v ¼Circumferential velocity

wm ¼Mean axial velocity

w ¼Axial velocity

Greek symbols

� ¼Curvature ratio

� ¼Axial direction

� ¼Viscosity

� ¼ Stress

� ¼Density

� ¼Circumferential
direction

Subscripts

0 ¼ at (r ¼ 0; � ¼ 0)

b ¼Bulk property

c ¼Curved pipe

fd ¼Fully developed condition

h ¼Hydrodynamic

m ¼Cross sectional averaged value

s ¼ Straight pipe, surface

t ¼Total value, thermal

w ¼Pipe wall

Superscripts
0 ¼Dimensional quantity

1. Introduction
Flow and heat transfer in a curved pipe is one of the most attractive research fields
of thermofluid mechanics. It arises in many engineering problems such as heat
exchangers, bends in piping systems, cooling of gas turbine blades and in bio-fluid
mechanics, especially blood flow in the aorta.

Owing to the presence of a secondary motion caused by centrifugal effects, the
location of the maximum axial velocity moves towards the outer wall of a curved pipe,
as it was first discovered by Williams et al. (1902). Dean (1927, 1928), for the first time,
showed that the flow in slightly curved pipes depends primarily on a single non-
dimensional parameter called Dean number, De. Centrifugal forces give rise to a
secondary flow that consists of a pair of counter-rotating cells, called Dean cells. For
higher Dean numbers, centrifugal instability appears close to the outer wall, generating
additional pair of counter-rotating vortices known as Dean vortices. Dean cells are
present even at the lowest Dean numbers due to the imbalance between centrifugal and
viscous forces. More detailed studies of the hydrodynamics of Dean flow have been
reported by Berger et al. (1983), Bara et al. (1992), and Le Guer et al. (2001).

Austin (1971), Patankar et al. (1974), and Humphrey (1977) carried out finite difference
calculations of the flow development in a curved pipe beginning with Poiseuille flow at
the inlet. Soh and Berger (1984) investigated the development of entry flow in a curved
pipe and observed secondary flow separation near the inner wall in the developing
region resulting in two-step plateau-like axial velocity profiles at high Dean numbers.

The secondary flow improves the global heat transfer. For instance, the inner Nusselt
number of a helical coil is higher than that of a straight tube (Shah and Joshi, 1987).
Acharya et al. (1993) showed that in coiled tubes periferally averaged Nusselt number
undergos spatial oscillations before reaching an axially invariant fully developed value.

Ishigaki (1996) examined the flow structure and friction factor numerically for fixed
and rotating curved pipes with a small curvature and presented semi-empirical formulas
for the friction factor and Nusselt number in fully developed region (Ishigaki, 1994, 1996).

Zheng et al. (2000) studied combined forced convection, buoyancy, and thermal radiation
in the entrance region of helical pipes and found that the buoyancy has more effects in
temperature field than it has in velocity field. Kumar and Nigam (2005) simulated entrance
flow filed in a curved pipe numerically with a first order finite-volume method.
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The analogy between the flows through stationary curved ducts and orthogonally
rotating straight ducts have been qualitatively performed for a circular cross section by
several authors (Trefethen, 1957; Ito and Nanbu, 1971). In the case of rectangular ducts,
Papa et al. (2002) reported that for high Reynolds and rotation numbers, flow patterns in
rectangular ducts can break into two or more pair of vortices; Lee and Baek (2006)
showed that for the flow field satisfied the ‘‘asymptotic invariance property’’, there were
strong quantitative similarities between the two flows. Based on these similarities, it is
possible to predict the flow characteristics in rotating ducts by considering the flow in
stationary curved ducts, and vice versa.

In this article, developing fluid flow and heat transfer are numerically investigated using a
projection method based on the second order finite difference discretization of the governing
equations written in the toroidal coordinate system. Heat transfer is considered at two different
boundary conditions including the constant wall temperature and constant heat flux at the wall.
Although several similar studies have been carried out previously, there is no precise
quantitative analysis of the hydrodynamic and thermal entrance lengths for the flow in the
curved pipes at different inlet conditions. Therefore, the numerical results obtained here
concentrate on the detailed investigation of the flow and temperature fields in the entrance
region of the curved pipes to precisely analyze the hydrodynamic and thermal entrance lengths
at different inlet conditions. The effects of Dean number on the flow field, entrance length,
secondary flow, and heat transfer are studied in detail. Here, loose coil approximation
(� < 1=16) is not used to simplify the equations (Nobari and Gharali, 2006), and the results for
high curvature values are compared with the loose one. Semi-empirical available data (Ishigaki,
1994, 1996) for the case of loose curvature are taken into account for validation of current results.

2. Mathematical formulation
2.1 Governing equations
Using the characteristic values consisting of density, �0, viscosity, �0, pipe radius, a0, inlet
axial velocity at the center, W 0

0, inlet temperature at the center, T 00, the non-dimensional
variables are defined as

~rr ¼
~rr0

a0
; ~VV ¼

~VV
0

W 0
0

; p ¼ p0

�0W 02
0

� ¼ � 0a0

�0W 0
0

; T ¼ T 0 � T 00
T�0 � T 00

ð1Þ

where primed quantities are dimensional and T�0 is a characteristic temperature which
will be defined based on the thermal boundary conditions at the wall. Taking into account
the characteristic parameters mentioned above the following non-dimensional parameters
can be defined.

Re ¼ �
0a0W 0

0

�0
; Pr ¼

�0c0p
k0

; Ec ¼ W 02
0

c0pðT�0 � T 00Þ
ð2Þ

where T�0 is considered as

T�0 ¼ T 0s; for constant wall temperature

T�0 ¼ T 00 þ
q0wa0

k0
; for constant wall heat flux

ð3Þ
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By this definition for the non-dimensional temperature, T, the energy equation will be
identical for two different thermal boundary conditions at the wall.

For incompressible viscous flow neglecting gravity, the continuity, momentum, and
energy equations in non-dimensional forms using the toroidal coordinates ðr; �; �Þ
shown in Figure 1 may be written as (Berger et al., 1983)

continuity

@

@r
ðrBuÞ þ @

@�
ðBvÞ þ @

@�
ð�rwÞ ¼ 0 ð4Þ

radial momentum

@u

@t
þ 1

rB

@

@r
rBu2
� �

þ @

@�
Buvð Þ þ @

@�
�ruwð Þ � Bv2 � �rw2 cos�

� �

¼ � @p

@r
þ 1

Re

1

rB

@

@r
rB
@u

@r

� �
þ @

@�

B

r

@u

@�

� �
þ @

@�

�2r

B

@u

@�

� �� ��

� 1

r2
2
@v

@�
þ u

� �
þ �v sin�

rB
þ �

2 cos�

B2
v sin�� u cos�� 2

@w

@�

� �	
ð5Þ

Figure 1.
(top) Curved pipe
geometry in toroidal
coordinate system
(bottom) different regions
of a cross section
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circumferential momentum

@v

@t
þ 1

rB

@

@r
rBuvð Þ þ @

@�
Bv2
� �

þ @

@�
�rvwð Þ þ Buvþ �rw2 sin�

� �

¼ � @p

@�
þ 1

Re

1

rB

@

@r
rB
@v

@r

� �
þ @

@�

B

r

@v

@�

� �
þ @

@�

�2r

B

@v

@�

� �� ��

þ 1

r2
2
@u

@�
� v

� �
� �u sin�

rB
� �

2 sin�

B2
v sin�� u cos�� 2

@w

@�

� �	 ð6Þ

axial momentum

@w

@t
þ 1

rB

@

@r
rBuwð Þ þ @

@�
Bvwð Þ þ @

@�
�rw2
� �

þ �rw u cos�� v sin�ð Þ
� �

¼ � �
B

@p

@�
þ 1

Re

1

rB

@

@r
rB
@w

@r

� �
þ @

@�

B

r

@w

@�

� �
þ @

@�

�2r

B

@w

@�

� �� ��

þ 2�2

B2

@u

@�
cos�� @v

@�
sin�� w

2

� �	 ð7Þ

energy

@T

@t
þ 1

rB

@

@r
rBuTð Þ þ @

@�
BvTð Þ þ @

@�
�rwTð Þ

� �

¼ Ec
@p

@t
þ 1

rB

@

@r
rBupð Þ þ @

@�
Bvpð Þ þ @

@�
�rwpð Þ

� �� 	

þ 1

RePr

1

rB

@

@r
rB
@T

@r

� �
þ @

@�

B

r

@T

@�

� �
þ @

@�

�2r

B

@T

@�

� �� �� 	 ð8Þ

where

� ¼ a0

R0
; B ¼ 1þ �r cos� ð9Þ

and u, v, w are the velocity components in r ,� and � directions, respectively.
Other non-dimensional flow quantities and parameters are defined as

�rr ¼ 2
@u

@r

��� ¼
2

r

@v

@�
þ u

� �

��� ¼
2�

B

@w

@�
þ u cos�� v sin�

� �

�r� ¼ ��r ¼
@v

@r
þ 1

r

@u

@�
� v

r

��� ¼ ��� ¼
1

r

@w

@�
þ �

B

@v

@�
þ �w sin�

B

�r� ¼ ��r ¼
�

B

@u

@�
þ @w

@r
� �w cos�

B

ð10Þ
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�w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

r� þ �2
r�

q
ð11Þ

Cf ¼
�w=w2

m
1
2 Re

;Cf ;m ¼
1

2�

ð2�

0

Cf d�;Cf ;t ¼
1

�fd

ð�fd

0

Cf ;md� ð12Þ

where wm is the non-dimensional mean axial velocity; Cf , local friction factor, Cf ;m,
cross sectional average friction factor; and Cf ;t , average friction factor for a curved pipe
(overall entrance region).

With the bulk fluid temperature, T 0b,

T 0b ¼
Ð
A w0T 0dAÐ

A w0dA
ð13Þ

local convection heat transfer coefficient can be obtained as

h0 ¼ q0w
jT 0s � T 0bj

ð14Þ

At the constant wall temperature case using Equations (3) and (14), local Nusselt
number, Nu ¼ h0a0

k0 , and its cross sectional average are obtained as

Nu ¼

@T

@r

� �
r¼1

j1� Tbj
; Num ¼

1

2�

ð2�

0

Nu d� ð15Þ

For constant heat flux case, cross sectional average convection heat transfer coefficient
is defined by substituting T 0s with the mean surface temperature at each cross section,
T 0s;m, through Equation (14). Therefore, using Equation (3), cross sectional average
Nusselt number for constant heat flux at the wall is determined as

Num ¼
1

jTs;m � Tbj
ð16Þ

Overall average Nusselt number, Nut , in the entrance region can be determined as

Nut ¼
1

�fd

ð�fd

0

Numd� ð17Þ

Another important non-dimensional parameter is the Dean number, De or KLC , which
is defined as follows (Lee and Baek, 2002; Nobari and Gharali, 2006)

De ¼ KLC ¼ Rem

ffiffiffiffiffi
2�
p

ð18Þ

where Rem ¼ �0d0w0m
�0 ¼ 2wm � Re, is the conventional Reynolds number based on bulk

velocity and pipe diameter.
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2.2 Boundary conditions
Here, the inlet hydrodynamic boundary condition is considered to be the fully
developed velocity profile obtained from the analytical solution of fluid flow in a
straight pipe (Bejan, 1984). Therefore, it can be written as

uðr; �; 0Þ ¼ vðr; �; 0Þ ¼ 0; wðr; �; 0Þ ¼ 1� r2 ð19Þ

For the inlet temperature, two different boundary conditions are taken into account
including uniform temperature (I.B.1) and fully developed temperature concerning the
thermal boundary conditions at the wall of the straight pipe (I.B.2). Therefore, two
different cases are studied at each thermal boundary at the wall.

In the case of constant heat flux at the wall, the inlet temperatures are considered as

Tðr; �; 0Þ ¼ 0; ðIB:1Þ ð20Þ

Tðr; �; 0Þ ¼ r2 � r4

4
; ðIB:2Þ ð21Þ

In the case of constant wall temperature the inlet temperatures are defined as

Tðr; �; 0Þ ¼ 0; ðI :B:1Þ ð22Þ
d2T

dr2
þ 1

r

dT

dr
þ 4Nuð1� r2ÞðT � 1Þ ¼ 0;

Tðr ¼ 0Þ ¼ 0; Tðr ¼ 1Þ ¼ 1; ðIB:2Þ
ð23Þ

The above equation is solved numerically to obtain the concerning fully developed
temperature for the straight pipe, which is used as the inlet temperature of the curved pipe.

No-slip boundary conditions are applied at the wall for velocities, and two thermal
boundaries consisting of constant wall temperature and constant heat flux at the wall
are used.

uð1; �; �Þ ¼ vð1; �; �Þ ¼ wð1; �; �Þ ¼ 0;

Tð1; �; �Þ ¼ 1 ; constant wall temperature
@T

@r
¼ 1 at r ¼ 1 ; constant wall heat flux

ð24Þ

Assuming fully developed conditions at the outlet of the curved pipe, the following
Neumman boundary conditions are implemented:

@u

@�
¼ @v

@�
¼ @w

@�
¼ 0 at � ¼ �fd;h

@

@�

T � Ts

Tb � Ts

� �
¼ 0 at � ¼ �fd;t

ð25Þ

This general form of fully developed thermal boundary condition can be made simpler
in each case of thermal boundary conditions at the wall (Nobari and Gharali, 2006).

Since the flow field in a curved pipe is symmetrical relative to the horizontal mid-
plane, it is enough to solve the governing equations in upper or lower half of the curved
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pipe. Therefore, the boundary conditions at the plane of symmetry are

@u

@�
¼ @w

@�
¼ @T

@�
¼ v ¼ 0 at � ¼ 0; � ð26Þ

3. Numerical method
An O-type structured orthogonal grid system, shown in Figure 2(a), has been generated to
solve the governing equations in the toroidal coordinate system employing projection method
which is based on the second order discretization in space and first order forward in time.

The projection algorithm introduced by Chorin (1968) and independently by Temam
(1978) is one of the most powerful numerical tools used in solving incompressible
Navier-Stokes equations at moderate Reynolds numbers. It has been employed
successfully for convection problems by finite difference (Lee and Baek, 2002) and
finite element (Nonino and Comini, 2002; Comini et al., 2004) methods. Using the
projection method, the Navier-Stokes equation is split into two simpler equations
which are linked by satisfying continuity to obtain a Poisson equation for the pressure
field. Briefly, the algorithm is explained at the following.

Employing a provisional velocity (~VV
�
), the first step of the projection method is written as

~VV
�
� ~VV

n

�t
þ ½ð~VV :rÞ~VV �n ¼ 1

Re
r2~VV

n
ð27Þ

which is the momentum equation without the pressure gradient term. Then at the second
step, the provisional velocity is corrected by considering the following equations:

~VV
nþ1
� ~VV

�

�t
þrpnþ1 ¼ 0 ð28Þ

Taking the divergence of above equation and satisfying continuity at new time step

(r:~VV
nþ1
¼ 0), the Poisson equation for the pressure is obtained as

r2pnþ1 ¼ 1

�t
r:~VV

�
ð29Þ

After computing ~VV
�

by Equation (27), pnþ1 is obtained solving the Poisson equation

(Equation (29)) via an iterative method. Finally, velocity ~VV
nþ1

is corrected using Equation
(28) and algorithm proceeds to next time step. Since an explicit method is used to solve the
unsteady full Navier-Stokes equations, through von Neumann stability method
(Anderson, 1995) the following stability conditions need to be satisfied for each cell

�tcell

Re�h2
min

� 1

6
; �tcellReV 2

max

hmin

hmax

� �2

� 1 ð30Þ

where, hmin and hmax are

hmin ¼ minð�r; r��;
B

�
��Þ; hmax ¼ maxð�r; r��;

B

�
��Þ
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The time step, �t used in the numerical calculation can be at most equal to the smallest
cell time step. The choice of grid resolution depends on the Dean and Reynolds
numbers, consequently, the resolutions considered here vary from 30� 38 to 40� 40 in
r � � and 23 to 75 in � direction. For this mesh sizes, to satisfy stability conditions,
time step sizes are at the order of 10�3 to 10�4.

It should be declared that the maximum error of the residuals in all runs is set to be
of the order of 10�8.

Figure 2.
(a) Structured grid

topology and (b)
comparison of fully

developed axial velocity
on the plane of symmetry

(section B-B) for
Dean ¼ 522:4

ð� ¼ 1=20;Re ¼ 1;652Þ
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Validation of results has been done by a comparison with previous works as shown in
Figure 2(b). To test the conservative property of the developed code, the grid independency
test has been successfully carried out for different grid sizes, which is shown in Figure 3.

4. Results and discussion
To study developing flow and heat transfer in a curved pipe, direct numerical simulation is
carried out for Dean numbers at the range of 76-522 and the Reynolds numbers from 242 to

Figure 3.
Grid independency test
for Dean ¼ 129:4
ð� ¼ 1=7;Re ¼ 242Þ
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1,652. For the higher Dean numbers beyond the specified range, numerical instabilities
appear, which is the convergency limitation of the numerical scheme used here. Five different
curvature ratios (� ¼ 1=2; 1=3; 1=7; 1=20; 1=30) are considered to cover both ranges of loose
and non-loose curved pipes, and for the thermal analysis two Prandtl numbers of 0.5 and 1
are taken into account at the both thermal boundaries introduced earlier. The numerical
results obtained here concentrate on the detailed investigation of flow and temperature fields
at the entrance region by a quantitative analysis of hydrodynamic and thermal entrance
lengths which have not been studied precisely at the best of our knowledge.

Figure 4 shows the contours of axial velocity at different cross sections of the curved
pipe for two Dean numbers. As it is seen in this figure, along the entrance region the
location of maximum axial velocity moves from the center of the curved pipe towards
the outer wall due to centrifugal effects. Consequently, the thickness of axial flow
boundary layer decreases on the outer wall and increases on the inner wall. As the
Dean number increases, the location of maximum axial velocity approaches more

Figure 4.
Contours of axial velocity

at different sections
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closer to the outer wall due to strengthening centrifugal forces. The criterion of
development either hydrodynamically or thermally follows Equations (24) and (25).

Figures 5 and 6 represent secondary flows at different cross sections of the curved
pipe for the same cases of Figure 4. The secondary flow boundary layer thickness at all
De numbers starts increasing from � ¼ 0 to � ¼ 180 degrees, and as flow proceeds
downstream the intensity of the secondary flow increases first and then decreases
while approaching the fully developed region. This increasing and decreasing rate is

Figure 5.
Streamlines (upper half)
and velocity field of
secondary flow (lower
half) at different sections
for Dean ¼ 129:4
ð� ¼ 1=7;Re ¼ 242Þ
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greater for the high De numbers. For low De numbers (see Figure 5) the secondary flow
consists of a pair of counter-rotating cells (one cell is in upper half and the other is in
lower half of pipe), called Dean cells. But for higher De numbers due to circumferential
adverse pressure gradient, the secondary flow boundary layer becomes s-shaped (see
Figure 6). This is due to instability of Dean vortices when De number is greater than
the critical value (Mokrani et al., 1997). This instability intensifies until � ¼ 94:5,
leading to another pair of vortices at this section. As the flow proceeds further

Figure 6.
Streamlines (upper half)

and velocity field of
secondary flow (lower

half) at different sections
for Dean ¼ 481:1

ð� ¼ 1=7; Re ¼ 900Þ
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downstream, secondary flow boundary layer changes from s-shaped to d-shaped and
the Dean vortices disappear, resulting in Dean cells again.

In Figure 7, the development of axial velocity on the symmetry plane and the plane
perpendicular to the symmetry plane are shown for the above mentioned two cases.
Comparing the axial velocity profiles for the two different Reynolds numbers indicates
that the maximum velocity location for large Reynolds number of 900 gets more closer
to the outer wall than for low Reynolds number of 242.

Variations of friction factor (Cf ) vs circumferential direction (�) at different cross
sections of the curved pipe are presented in Figure 8. For low Dean numbers (Figure
8(a)), as the flow proceeds downstream from � ¼ 0 to 58.5 degrees, the axial velocity
gradient has dominant effect on the friction factor which increases at the outer wall
(0 � � � �

2). Beyond approximately � ¼ 58:5 degrees, friction factor decreases until
approaching fully developed region as expected from the strength reduction of
secondary flows. However, for high De numbers (Figure 8(b)), the effect of secondary
flows becomes more important especially close to the inlet section (0 < � < 40:5)
where the location of maximum friction factor is near high intensity secondary flow
region at about � ¼ 45 (see curve for � ¼ 22:5) instead of � ¼ 0 (the location of
maximum axial flow gradient). Further downstream, the variation trend of the friction
factor for large Dean numbers is almost the same as low one. An important point to be
mentioned is that at the inner wall region of the curved pipe (�2 < � < �), the axial
velocity gradient decreases and the secondary flow strengthens. These two events have
opposing effect on friction factor value resulting in smaller variation in the friction
factor.

Figure 9 indicates the ratio of average friction factor in a fully developed cross
section to this value for straight pipe (ðCf ;mÞc=ðCf ;mÞs) vs De number. The comparison
of the available semi-empirical data for the loose curved pipes (� > 1

16) with the
computed results indicates a very good agreement. Furthermore, for non loose curved

Figure 7.
Development of axial
velocity on the section
B-B and on the section
A-A
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pipes (� < 1
16 ), the normalized average friction factor vs De number shown in Figure 9

predicts slightly larger values than semi-empirical results (loose curved pipes). This is
physically true due to the presence of large velocity gradients in the curved pipes with
high curvatures (� < 1

16 ).
Variations of the cross sectional average friction factor (Cf ;m) along the axial

direction of the curved pipe in the entrance region is represented in Figure 10. Figure

Figure 8.
Friction factor (Cf ) vs �

at different sections
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10(a) is for three different Reynolds numbers and a fixed curvature, and Figure 10(b) is
for three different curvatures at a fixed Reynolds number. As discussed earlier (Figure
8) the friction factor has a maximum value in the entrance region which decreases to
the fully developed constant value at all cases. In this figure, the cyclic behavior of
friction factor due to Dean instability which is stronger for high De numbers is
observed in the entrance region of curved pipes.

To investigate the dependence of the hydrodynamic and thermal entrance length on
the Reynolds number and curvature ratio in curved pipes, Figures 11(a) and (b) are
represented. As it is clear from the numerical results, for small curvature ratios (less
than 1

7), the hydrodynamic entrance lengths increase as curvature ratios decreases. For
larger curvature ratios (greater than 1

7) the entrance lengths depend only on the
Reynolds number. Similar trend can be observed for the thermal entrance lengths.
Since, curvature ratio has small effect on the entrance length except in the very small
curvature ratios, De as a function of Re and � is not a pertinent parameter in entrance
length considerations.

For the thermal analysis in the entrance region of the curved pipe, consider Figures
12 and 13 which indicate temperature contours at different cross sections along the
entrance region for different thermal boundary conditions with I.B.2 inlet profile. It can
be seen that within the whole entrance region, the trend of temperature field variations
is similar to the axial velocity field (Figure 4) which is also shown by Ishigaki (1999) in
fully developed region. Another point is that developing of temperature profile for
constant heat flux goes on further down stream than of constant temperature at the
wall, resulting in longer thermal entrance length in constant heat flux case. At high
De numbers (Figure 13), the temperature field is affected by strong secondary flows
and becomes corrugated near the curved pipe inlet due to Dean instabilities.

The local Nusselt number vs circumferential direction at different cross sections is
shown in Figure 14. Due to high temperature gradients at the outer wall, the local

Figure 9.
Normalized friction factor
vs De in fully developed
region
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Nusselt number becomes maximum at that region. In Figure 15, the cross sectional
average Nusselt number vs axial direction for two De numbers and two thermal
boundary conditions at the inlet in the case of constant temperature at the wall is
shown. Reduction of temperature gradient from infinity for case I.B.1 causes the
average Nusselt number ðNumÞ to decrease near the inlet. When flow moves further
downstream, for both cases I.B.1 and I.B.2, Num in the entrance region fluctuates
because of Dean instabilities. The fluctuation gets stronger as Dean number increases.

Figure 10.
Average friction factor

(Cf ;m) vs �
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Figure 16 indicates variations of cross sectional average Nusselt number against axial
direction of the curved pipe for two De numbers at two inlet thermal boundary
conditions in the case of constant heat flux. As it can observed from these figures, the
fully developed Nusselt number is independent of inlet profiles and two results
coincide each other. In case of I.B.2 which is for thermally fully developed condition of
a straight pipe, the inlet Nusselt number (at � ¼ 0) obtained from numerical results is

Figure 11.
Hydrodynamic and
thermal entrance length
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the same as analytical value of 3:66
2 for constant wall temperature (Figure 15) and 4:36

2 for
constant heat flux (Figure 16). In these figures, the oscillations of Nusselt number due
to Dean instability (stronger for high De numbers) is observed in entrance region. The
oscillating strength of secondary flow along entrance region as explained in Figures 5
and 6 lead to this oscillating behavior of Nusselt number. In addition to high De
numbers, in the case of constant heat flux, the inlet temperature profile also affects the
oscillations in such a way that uniform inlet (I.B.1) tends to more severe oscillations
than fully developed one (I.B.2).

The logarithmic trend of bulk temperature for constant wall temperature (Figure 15)
and linear trend of bulk temperature for constant heat flux conditions at the wall
(Figure 16) in the curved pipe are similar to the straight one. Also, in Figure 16 the
temperature values at three different points of the wall including � ¼ 0, 90 and 180

Figure 12.
Contours of temperature

at different sections
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degrees along the axial direction of the curved pipe are shown, where the maximum
temperature belongs to the inner wall due to low convection effect on that location.

For another verification in fully developed region, the normalized average Nusselt
number for the curved pipe (the ratio of average Nusselt number at a fully developed
section for the curved pipe to this value for straight pipe) is compared with the
semi-empirical data (Figure 17) presented by Ishigaki (1996, 1994), which is valid in the
range of � < 1

16.
Finally, in Figure 18, the average Nusselt number overall the entrance region of

curved pipe vs De is presented at different thermal boundary conditions for case I.B.1.
This quantity is a criterion of average heat transfer rate per unit area of the pipe in
entrance region. The results indicate that the Nusselt number increases as Dean
number increases, which is achieved with increase of either Reynolds number or

Figure 13.
Contours of temperature
at different sections
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Figure 14.
Local Nusselt number vs

� at different sections for
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curvature of the pipe. Furthermore, average heat transfer rate in the entrance region
for the constant heat flux case at the wall is larger than the constant temperature case
at the wall. Also, with the increase of Pr number from 0.5 to 1, heat transfer rate
enhances about 27 percent in constant temperature case and 22 percent in constant
heat flux case within the entrance region.

Figure 15.
Average Nusselt number
ðNumÞ vs �
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5. Conclusion
In this article, developing flow and heat transfer in a curved pipe are studied
numerically by solving full Navier-Stokes and energy equations employing the
projection method based on second order finite difference discretization at different
thermal boundaries and inlet conditions. The outcome of numerical results can be
summarized as follows.

The intensity of secondary flow increases near the inlet and then decreases,
especially in the case of high Dean numbers due to formation of Dean vortices. This
causes friction factor decreases from a maximum value within the entrance region until
approaching the fully developed region. Therefore, regardless of inlet profiles,
maximum friction factor and also maximum heat transfer rate occurs in the entrance
region.

When loose coil approximation is not valid (� > 1
16 ), the results predict larger values

for normalized mean friction factor at fully developed region than the values predicted
by semi-empirical curves obtained for loose curved pipes (Ishigaki, 1994, 1996).
Because of more intensity of secondary flows, the friction factor in non-loose curved
pipes is greater than that of the loose ones.

Figure 16.
Average Nusselt number

ðNumÞ vs �
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Within the entrance region the maximum velocity location shifts from the center to the
outer wall of the curved pipe. As Reynolds number increases maximum axial velocity
location gets more closer to the outer wall.

Figure 17.
Average Nusselt number
ðNumÞ vs De in fully
developed region
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The entrance length dependence on curvature ratio is just considerable for curvature
ratios less than 1

7 and is negligible beyond this value. Therefore, Dean number is not a
pertinent parameter and the entrance length depends only on Reynolds number
especially for � > 1

7.
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Adler, V.M. (1934), ‘‘Strömung in gekrümmten Rohren’’, Zeitschrift fur Angew and te Mathernatik
und Mechanik, Vol. 14, pp. 257-75.

Anderson, J.D. (1995), Computational Fluid Dynamics: The Basics with Applications, Ch. 4, MGH,
New York, NY.

Austin, L. (1971), ‘‘The development of viscous flow within helical coils’’, PhD thesis, University
of Utah, Salt Lake City, UT.

Bara, B., Nandakumar, K. and Masliyah, J.H. (1992), ‘‘An experimental and numerical study of the
Dean problem: Flow development towards two-dimensional multiple solution’’, Journal of
Fluid Mechanics, Vol. 244, pp. 339-76.

Bejan, A. (1984), Convection Heat Transfer, Ch. 3, Wiley, New York, NY.

Berger, B.A., Talbot, L. and Yao, L.S. (1983), ‘‘Flow in curved pipes’’, Annual Review of Fluid
Mechanics, Vol. 15, pp. 461-512.

Chorin, J.A. (1968), ‘‘Numerical solution of the Navier-Stokes equations’’, Mathematics and
Computing, Vol. 22 No. 104, pp. 745-62.

Collins, W.M. and Dennis, S.C.R. (1975), ‘‘The steady motion of a viscous fluid in a curved tube’’,
Quarterly Journal of Mechanics and Applied Mathematics, Vol. 28, pp. 133-56.

Comini, G., Croce, G. and Nonino, C. (2004), ‘‘Modeling of convection enhancement mechanisms’’,
International Journal of Numerical Methods for Heat and Fluid Flow, Vol. 14 No. 1,
pp. 66-84.

Figure 18.
Total Nusselt number for
the curved pipe (Nut ) vs

De for I.B.1



HFF
19,7

872

Dean, W.R. (1927), ‘‘Note on the motion of fluid in a curved pipe’’, Philosophical Magazine, Vol. 20,
pp. 208-23.

Dean, W.R. (1928), ‘‘The streamline motion of fluid in a curved pipe’’, Philosophical Magazine,
Vol. 30, pp. 673-95.

Humphrey, J.A.C. (1977), ‘‘Flow in ducts with curvature and roughness’’, PhD thesis, Imperial
College of Science and Technology.

Ishigaki, H. (1994), ‘‘Analogy between laminar flows in curved pipes and orthogonally rotating
pipes’’, Journal of Fluid Mechanics, Vol. 268, pp. 133-45.

Ishigaki, H. (1996), ‘‘Laminar flow in rotating curved pipes’’, Journal of Fluid Mechnics, Vol. 329,
pp. 373-88.

Ishigaki, H. (1999), ‘‘Analogy of forced convective heat transfer between laminar flows in curved
pipes and orthogonally rotating pipes’’, JSME International Journal Series B, Vol. 42 No. 1,
pp. 48-55.

Ito, H. and Nanbu, K. (1971), ‘‘Flow in rotating straight pipes of circular cross section’’, ASME
Journal of Basic Engineering, Vol. 93, pp. 383-94.

Kumar, V. and Nigam, K.D.P. (2005), ‘‘Numerical simulation of steady flow fields in coiled flow
inverter’’, International Journal of Heat and Mass Transfer, Vol. 48, pp. 4811-28.

Le Guer, Y., Castelain, C. and Peerhossaini, H. (2001), ‘‘Experimental study of chaotic advection
regime in a twisted duct flow’’, European Journal of Mechanics B – Fluids, Vol. 20,
pp. 205-32.

Lee, G.H. and Baek, J.H. (2002), ‘‘A numerical study on the similarity of fully developed turbulent
flows between in orthogonally rotating square ducts and stationary curved square ducts’’,
International Journal of Numerical Methods for Heat and Fluid Flow, Vol. 12, pp. 241-57.

Lee, G.H. and Baek, J.H. (2006), ‘‘Effect of aspect ratio on the similarity between developing
laminar flows in orthogonally rotating ducts and stationary curved ducts’’, International
Journal of Numerical Methods for Heat and Fluid Flow, Vol. 16 No. 4, pp. 494-508.

Mokrani, A., Castelain, C. and Peerhossaini, H. (1997), ‘‘The effects of chaotic advection on heat
transfer’’, International of Journal of Heat and Mass Transfer, Vol. 40 No. 13, pp. 3089-104.

Nobari, M.R.H. and Gharali, K. (2006), ‘‘A numerical study of flow and heat transfer in internally
finned rotating straight pipes and stationary curved pipes’’, Internationl Journal of Heat
and Mass Transfer, Vol. 49, pp. 1185-94.

Nonino, C. and Comini, G. (2002), ‘‘Convective heat transfer in ribbed square channels’’,
International Journal of Numerical Methods for Heat and Fluid Flow, Vol. 12 No. 5,
pp. 610-28.

Papa, F., Keith, T.G. Jr., DeWitt, K.J. and Vaidyanathan, K. (2002), ‘‘Numerical calculation of
developing laminar flow in rotating ducts with a 180 bend’’, International Journal of
Numerical Methods for Heat and Fluid Flow, Vol. 12 No. 7, pp. 780-99.

Patankar, S.V., Pratap, V.S. and Spalding, D.B. (1974), ‘‘Prediction of laminar flow and heat
transfer in helically coiled pipes’’, Journal of Fluid Mechanics, Vol. 62, pp. 539-51.

Shah, R.K. and Joshi, S.D. (1987), ‘‘Convective heat transfer in curved ducts’’, in Kakac, S., Shah,
R.K. and Aung, W. (Eds), Handbook of Single-Phase Convective Heat Transfer, Ch. 5, Wiley,
New York, NY.

Soh, W.Y. and Berger, S.A. (1984), ‘‘Laminar entrance flow in a curved pipe’’, Journal Fluid
Mechanics, Vol. 148, pp. 109-35.

Temam, R. (1978), ‘‘Navier-Stokes Equations’’, North-Holland, Amsterdam.

Trefethen, L.M. (1957), ‘‘Flow in rotating radial ducts’’, Report No. 55GL350-A, General Electric
Company, Fairfield, CT.



Flow and heat
transfer in a
curved pipe

873

Williams, G.S., Hubbell, C.W. and Fenkell, G.H. (1902), ‘‘Experiments at Detroit, Mish., on the
effect of curvature upon the flow of water in pipes’’, Transactions of ASCE, Vol. 47,
pp. 1-196.

Zheng, B., Lin, C.X. and Ebadian, M.A. (2000), ‘‘Combined laminar forced convection and thermal
radiation in a helical pipe’’, International Journal of Heat and Mass Transfer, Vol. 43,
pp. 1067-78.

Further reading

Li, L.J., Lin, C.X. and Ebadian, M.A. (1998), ‘‘Turbulent mixed convective heat transfer in the
entrance region of a curved pipe with uniform wall-temperature’’, International Journal of
Heat and Mass Transfer, Vol. 41, pp. 3793-805.

Corresponding author
M.R.H. Nobari can be contacted at: mrnobari@cic.aut.ac.ir

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints


